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Abstract-The combustion of a dilute fuel spray has been analysed in the framework of the spherical cell 
model. The quasi-steady burning of a typical droplet has been studied using the thin-flame approximation. 
At the cell surface, the boundary conditions of zero shear stress and convective heat/mass transport have 
been imposed. Analytical solutions for creeping motion of the drop have been obtained through a regular 
perturbation procedure with the drop Reynolds number as the perturbation parameter. A parametric study 
involving the drop Reynolds number, cell size and the free-stream conditions outside the cell surface has 

also been carried out. 

INTRODUCTION 

COMBUSTION of fuel droplets has been a subject of 
study for the past four decades. The majority of avail- 
able analyses pertain to the spherically symmetric 
combustion of an isolated droplet in a stationary oxid- 
izing environment [l-4]. Faeth [4] has also reviewed 
the studies which approximately estimate the con- 

vective enhancement in the burning rate. The influence 
of drop motion has been examined in detail over a 
wide Reynolds number range in the analyses of evap- 

oration [5-71, whereas theoretical investigations deal- 
ing with droplet combustion have been confined to 
the creeping flow regime. The singular perturbation 
technique was adopted [8, 91 to analyse the burning 
of an isolated drop moving slowly through an infinite 
expanse of an oxidizing atmosphere. An approximate 
accounting of convective effects was introduced by 
Sangiovanni [lo], who considered the heat and mass 
transfer during combustion to be confined to a film 
adjacent to the drop. The thickness of the convective 
film was evaluated from suitable Nusselt number cor- 

relations. 
Studies involving the interaction between burning 

drops are of recent origin. These analyses are broadly 
based on two alternative approaches, namely the 
group combustion model and the discrete droplet 
burning model. In the group combustion formulation 
[I I-131, attention is primarily focussed on the col- 
lective burning effects of a cloud of droplets. A more 
detailed picture of the burning characteristics in the 
vicinity of any typical droplet is revealed by the dis- 
crete droplet burning approach. It was suggested by 
Chiu and Liu [12] that a characteristic group com- 
bustion number, G, can be utilized to demarcate the 
regimes of applicability of the two aforementioned 
models. 

In the discrete droplet burning formulation, each 
drop is considered as a fuel source as well as a heat 
sink. Brzustowski et al. [14] used bispherical coor- 

dinates for calculating the interaction of two burning 
droplets. Labowsky [I 5-l 71 modified the principle of 

superposition to obtain the solution pertaining to a 
number of simple arrangements of droplets. Ray and 
Davis [I 81 carried out a transient analysis of the multi- 
droplet combustion utilizing the Fourier transform 

technique. Marberry et al. [19] applied an approxi- 
mate mass balance equation containing a delta func- 
tion and developed a much simpler solution procedure 
capable of reproducing the results of earlier cal- 
culations [14--l 71. However, all these studies failed to 

account for drop motion, due to the apparent math- 
ematical difficulties arising from the inclusion of con- 
vective terms. Furthermore, the analyses conducted 
so far were limited to simple droplet arrays. 

A powerful approach which has met with spec- 
tacular success in the hydrodynamic analysis of multi- 
particle systems is the unit cell approach [20, 211. In 

this approach, the spray is considered to be divided 
into many cells, each of which contains a particle 
placed at its centre. The cells are isolated from each 
other by applying suitable boundary conditions at 
the cell surfaces. Thus, the complex multi-body spray 
problem greatly simplifies to the study of a rep- 
resentative unit cell. Both Happel [20] and Kuwabara 
[21] investigated creeping motion of a particle assem- 
blage through a fluid. Happel employed a zero shear 
stress condition at the cell boundary with the objective 
of conceptually isolating the cells from mutual energy 
exchange. However, the zero vorticity condition of 
Kuwabara was presented as a hypothesis lacking such 
a physical basis. Later, the cell model was also utilized 
[22-241 in transient analyses of evaporating, station- 
ary droplets. Zung [22] investigated a purely mass 
transfer problem, while Tishkoff [23] also considered 
the heat transfer aspect. To achieve cell isolation, a 
zero mass transfer condition was imposed by Zung, 
whereas an additional zero heat flux condition was 
employed by Tishkoff. In all the models discussed in 
refs. [2&23], the cell voidage was assumed to be equal 
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NOMENCLATURE 

specific heat at constant pressure 
diffusion coefficient of the gas 
phase 

SchvabZeldovich variable, equation (2a) 
SchvabZeldovich variable, equation 

(2b) 
enthalpy (with letter subscripts) ; heat 

transfer coefficient 
heat of combustion 

polynomial defined as s’i P,(p) dp 

latent heat of evaporation 

Nusseh number, hr,/i 
Legendre polynomial of order n 
radius 
universal gas constant 

Reynolds number, pu, r,/q 
Schmidt number of the gas phase 

i conductivity of the gas 
mixture 

P coordinate variable equal to 
cos fI 

I’ stoichiometric coefficient 

5 normalized radial coordinate 

/’ density . 

; 
shear stress 
stream function for the gas phase 

IE stream function for the liquid phase. 

Subscripts 

velocity component (when subscripted with wb 
letters), velocity coefficient (when X 
subscripted with number) 0 
coefficient equal to SC - u,) 1 
molecular weight 10 
modified mass fraction 

mass fraction. II 

a, 

boiling point of the fuel 

cell surface 
droplet surface 
fuel 

product 
wet bulb 
oxidizer 
zero order quantity 
first order quantity 

first order quantity associated with zero 
order Legendre polynomial 

first order quantity associated with first 
order Legendre polynomial 
cloud condition. 

Greek symbols 

% 

viscosity 
angular coordinate 

Superscript 
0 reference quantity. 

to the system voidage. However, Bellan and Cuffel 

[24] considered spherical cells to be touching each 
other. Heat and mass transfer in the intercellular space 
was accounted for by adding suitable terms in the 

global conservation equations. 
In the present work, the unit cell approaches due 

to Happel [20] and Bellan and Cuffel [24] have been 
modified for the analysis of combustion of a dilute 
spray. The region of the spray sufficiently away from 

the injector, in a typical gas turbine combustor, is 
characterized by droplets separated from each other 

by distances substantially larger in comparison to the 
droplet diameters. Under such a condition, the 
assumption of a dilute spray burning is justified. The 
creeping flow regime of drop motion is examined, 
since the atomized fuel drops are often very small in 
size. The small value of the Reynolds number, coupled 
with the finite size of the cell, renders the problem 
amenable to regular perturbation study. with the 
Reynolds number as the perturbation parameter. An 
analytical solution is developed in this paper for the 
quasi-steady burning of a droplet within a spher- 
ical cell. A detailed parametric study of the re- 
sults obtained from the analytical solution is also 
presented. 

MATHEMATICAL FORMULATION OF THE 

PROBLEM 

A dilute spray of single component fuel drops mov- 
ing steadily through an oxidizing atmosphere is con- 
sidered. The discrete droplet burning model is 

adopted, owing to the smallness of the group com- 
bustion number for a dilute spray. Following the unit 
cell approach, the analysis focuses attention on a 
typical droplet inside a concentric spherical cell (Figs. 

I(a) and (b)). The spray is conceived to be made up 
of contiguous cells located in a common convective 
cloud. This description of the spray is very similar to 
the one propounded by Bellan and Cuffel [24]. The 
convective cloud brings in the necessary oxygen sup- 
ply and takes away the products of combustion and 
heat from each cell as it flows through the intercellular 
space. For a uniformly distributed spray of drops. the 
cross-sectional area normal to the direction of droplet 
motion varies periodically, resulting in a similar vari- 
ation of relative flow velocity. The composition and 
temperature of the cloud depend on the overall burn- 
ing characteristics of the spray. However, in the prc- 
sent work, these are taken as prescribed conditions. 
The combustion process within the cell is proposed to 
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FIG. 1. (a) Spray of droplets. (b) A typical droplet in a cell. 

be axisymmetric about the direction of drop trans- 

lation. A coordinate system (r, 0), fixed to the drop 
centre, is considered (Fig. 1 (b)). The other important 
assumptions include the thin-flame approximation, 
unit gas-phase Lewis number, constant properties and 
quasi-steady burning, which are usually invoked in 
any theoretical study of combustion. The imposition 
of quasi-steady burning of the droplet inside the cell 

is reasonable as long as the spray is dilute. Also, in a 
dilute spray, the chances of inter-droplet collisions 
and associated complexities are less. Buoyancy effects 
have been neglected in the present study due to the 
small size of droplets. The liquid phase heating is 

assumed to have been completed and the entire drop 
is taken to be at the corresponding wet bulb tem- 
perature, T,,,,,. Subject to the above assumptions, the 
dimensionless governing equations [9, 251 in terms of 
the stream function and SchvabZeldovich variables 

are given below. 
The liquid phase flow equation is 

The gas phase heat and mass transport equations 

can be expressed as 

( a~ aG ay ac 
+Sc ----- =O,l<r<r, (lc) a/L dr (3 ap > 

=O,l <r<r,. (Id) 

In the above equations 

I-$ a2 
E’=$+7-T 

+ 

and p = cos 0. 
Also, Y and q are the stream functions cor- 

responding to the gas and liquid phases respectively 
and G and H are the SchvabZeldovich variables 

(henceforth called S-Z variables) defined as 

G= Y,--Y, (2a) 

and 

H= T-Y,. (2b) 

Reference quantities for non-dimensionalizing length, 
stream function, temperature and mass fractions of 

fuel and oxidizer are respectively chosen as rd, r,q/p, 
AhJC,, W, (- vF W,/ W) and (- vx W,/ W), where 

w= v,w,+vxwx 

and 

Ah, = v,WFh;+v, W,ho, -vPWph;. 

The boundary conditions for equations (1 a)-( Id) 
are given as follows. 

(i) Continuity of tangential velocity and shear 

stress at the drop surface require 

a\i, ay - 
^I 

I =-I or I=1 dr ?_, 

and 

7 > 

[ 

a9 ^ 

+gL FT =O, r<l. (la) 

+31_p’)~ 
ar 11 ,= I 

Gas phase flow is governed by 

(34 

II 
WI 

r= I 

where 4, is the ratio of gas phase and liquid phase 
viscosities. 

(ii) Since the density ratio between the liquid 
and gas phases is large, one obtains from the mass = 0, 1 < r < r,. (lb) 
balance at the interface that 
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(3c) 

(iii) The heat and mass transfer conditions at the 
interface can be expressed as 

(3d) 

and 

(3e) 

where ud is the rate of evaporation from the drop 
surface and %I; = - W/v, W,. 

(iv) The Clausius-Clapeyron equation gives 

where b = (W W,LC,,)/(RAh,). 
(v) In compliance with Happel’s free-surface cell 

model, the shear stress at the cell surface is set equal 
to zero. Therefore 

(vi) It has been described earlier that the cloud 
flow velocity varies periodicaIIy for a regularly spaced 
array of drops. For this reason, a tangential velocity 
condition of the form 

is imposed at the cell boundary, where the Reynolds 
number Rr is based on the maximum velocity of the 
cloud flow. Such a periodic pattern along the cell 
boundaries was in fact predicted by Gal-or and Waslo 
[26]. 

(viii) Convective heat and mass transport between 
the cloud and the cell is considered in the present 
work. In earlier transient analyses [22, 231, the heat 
and mass fluxes at the cell surface were taken to be 
zero. However, these conditions do not fulfil the 
requirements of the quasi-steady model. Moreover, 
neither concentration nor temperature at the cell sur- 

face are known a priori and prescribing these would 
strongly influence the burning characteristics of the 
drop. Therefore, convective boundary conditions, 
which are likely to have lesser bearing upon the tem- 
perature and concentration tields inside the cell, are 
applied at the cell boundary. In terms of S--Z 
variables, these conditions can be expressed as 

= - (Nu- $ud) Y,,,, (3i) 

and 

The above form of cell boundary conditions have 
been chosen keeping in mind that convective effects 
arise both due to the drop motion and the radial flow 
generated by combustion. It is evident that the Nusselt 
number Nu should depend on factors such as droplet 

arrangement, fluid properties and flow characteristics. 
The selection of an appropriate value for this par- 
ameter is discussed later. 

SOLUTION PROCEDURE 

A careful examination of the physical features of 

the problem reveals that there are two independent 
flow effects, one generated by the combustion process 
itself and the other due to free and forced convection 
around the droplet. For a small stationary drop, the 
problem reduces to that of spherically symmetric 
burning and a purely radial flow occurs in this case. 
For a translating drop, the flow field no longer 
remains radial. In the present work, the buoyancy- 
driven flow is neglected and the convective flow gen- 
erated by drop motion is considered to be weak in 

comparison to the radial flow caused by burning. This 
requirement is met if the Reynolds number of drop 
motion is very small (Re = pu7 r,/q cc I), since the 
radial velocity generated by combustion is O(D/rd) 

and the Schmidt number of the gas phase is O(1). The 
small Re assumption enables us to adopt a per- 
turbation scheme for obtaining the solution. Indeed, 
a uniformly valid regular perturbation expansion is 
appropriate for the multi-drop situation, since the 
solution domain is finite in extent. Such an analysis 
has been carried out by El-Kaissy and Homsy [27] fat 
flow through a multi-particle assemblage. The authors 
have also shown that this scheme is valid for a larger 
solution domain at a smaller Re and vice versa. 

With the above-mentioned ideas in mind, the 
unknown variables can be expanded in the forms : 

‘&r. p) = Rr ‘@, (r, p) + o( Rr) (4a) 

‘I’(,, P) = ‘I’&) + Re YI (r, P) +o(Re) (4b) 

G(r. p) = G,,(r) + Re G, (r.,u) +o(Rc) (4C) 

H(r,p) = H,,(r)+Re H,(r.p)+o(Re). (44 

In addition, since the drop motion augments heat 
and mass transfer rates above the values cor- 
responding to the basic radial flow, the quantities ud 
and Nu may be expanded as 

U<,(P) = LLO + Re u, (P) + 4Rp) 

NM = Nu,fRrNu,+o(Re). 

(4e) 

(@I 
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For the sake of mathematical simplicity, the expan- 
sions have been truncated at the first order. 

The Nusselt number at the cell surface is a free 
parameter of the present model, whose value needs 

to be appropriately determined. In conformity with 
equation (4f), this parameter is evaluated as 

Nu = NuO[l f0.5 Sc Re(rJr,J] (4g) 

where Nu, is the Nusselt number in the absence of 

drop motion. The augmentation factor, pertaining to 
the motion of the drop, has been selected in the form 
which is commonly used for a creeping flow regime 
[4, 281. Due care has been taken to account for the 
fact that the convective condition of the present for- 
mulation is applied at the cell surface. The procedure 

of estimating the zero order Nusselt number Nu, has 

been described in Appendix A. 

Zero order solutions 
The zero order problem corresponds to spherically 

symmetric burning of the drop inside the cell, with a 
purely radial flow emanating from the drop surface. 
Continuity of mass flux for this spherically symmetric 
situation leads to 

pu,4nr2 = constant (5a) 

where u, is the zero order radial flow velocity. For 
constant-density flow, the above expression can be 
recast in the form 

u, = uJr’ (5b) 

where ug is the zero order evaporation velocity at 
r= 1, as described in equation (4e). The cor- 
responding zero order stream function solution is 

Yo = U,(l -,U). (6) 

From equations (lc) and (d), the zero order equations 
for the S-Z variables are obtained as 

(r’Gh)‘--vOGh = 0, 1 < r < r, (W 

and 

(r’H;,)‘-v,H’,, = 0, I < r < r, (7b) 

where o0 = Scu,, and the prime denotes differ- 
entiation with respect to r. The general solutions for 
the above equations are 

G, = A,,(e~‘li”-e~‘ll)/v,+B,i, @a) 

and 

H, = Ah,(e-‘“!‘-e-“l~)/vo + B,,,, (8b) 

where Ago, A,,,, BgO and B,,, are the constants of 
integration. 

The zero order boundary conditions derived from 
equations (3d)-(3f), (3i) and (3j) are: 

G;(l)-t~,G,,(l) = -z+” (9a) 

H;(l) = Lv, (9b) 

GXrJ+ (Nuo --Q3G&A 

= - (Nu, -v,/rz) Y,., (9c) 

W&J + 6% -u0/r,2)H0(rJ 

= (Nu, -~O/rXTa - Yx,) (9d) 

The above relations can be used to determine the 
constants of integration and the spherically symmetric 

evaporation velocity, ~4”. Finally, the complete zero 
order solutions for S-Z variables are obtained as 

xexp {vO($ - $1 (lOa) 

and 

-Nu,exp{u,(l-l/r,)} {Nu~-L+,/~~}~’ 
1 

(lob) 

where u,,( = Scu,) can be iteratively determined 
through the equation 

ln[l- (*++)(I-$&) 

xexp{-uO(l-k)]]=l([k 

1 

T,-Yx,,+L l- 
{ i 

Nu,exp(vO-uOlrJ ’ II 1 (NUO - vdc?) 
(1Oc) 

First order solutions 
The first order stream function equations for the 

liquid and gas phases respectively are 

E2E2q, =O, r-c 1 (1 la) 

and 

1 < r < r,. (llb) 

Following refs. [9, 291, the general solution of the 
above equations can be obtained as : 

and 
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and fn(r), in general, is made up of four independent 
radial solutions. 

The constants of integration in the above equations 
can be determined from the first order boundary con- 
ditions derived from equations (3a), (3b), (3g) and 

(3h). Among these, radial velocity condition at the 
drop surface and the convective velocity condition at 
the cell surface merit special attention. To first order 
in Re, the conditions are 

(134 

and 

ay’, 

Sr ,-,< 
= 2r,&,(& (13b) 

The general gas phase flow solution given by equa- 
tion (12b) suggests an expansion for u , (p) of the form 

The first order flow solution is finally obtained as 

+(k,+l,u,,)lr+(k4+14u,,)l,(r))l,,(~) 

+ 5 ud(rKn(~) 1 (14) 
n=2 

where 

k, = -2r,d,? 

kz = -2r,dzz 

k, = -(k, +kl) 

k, = -2r,d,: 

1, = (2~,+I)d,,+d,z/r,z-d,i/rl 

lz = (24 + 1 )d,, + d&,2 - dz7/rc3 

I, = 1 -I, -1, 

4 = (2~,+I)dzI+d32/rc2-dd331r: 

with $, the entries of the matrix [D] which is defined 
as : 

[Dl = 

The separated first order equations for the S-Z 

variables are : 

and 

1 <r<r,. (16) 

The corresponding boundary conditions are : 

where 

A close look at the governing equations (15) and 
(16) and the boundary conditions (I 7a)-( 17e) sug- 
gests that the variables G , and H, can be expanded in 

the following form : 

and 
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ff,(r,~) = f &,,,P~(P) 
n=O 

(18b) 

where P,(p) are the Legendre polynomials of order n. 
Substituting the above expansions into equations 

(15)-( 17), the governing differential equations and 
boundary conditions for the radial functions, Ry,,, and 
I?,,,,, can be obtained for each order of Legendre poly- 
nomial, P,z(p). The equations associated with zero 
order Legendre polynomial are : 

r2R~,,,+(2r-v,)R;,o = Scu,,Gb (1% 

and 

r2R~,,,+(2r-u,)R~,o = Scu,Jf’,. (20) 

The general solutions of these equations can be 
expressed in matrix form as : 

where 

f, o(r) = u, o eC”+(v,/r + 1) 

fzo(r) = e-‘o;’ 

f30(r) = 1. 

(21) 

It may be noted that flo(r) is the solution of the 
non-homogeneous part and .fzo(r), fxo(r) are the two 
linearly independent solutions of the homogeneous 
part of equations (19) and (20). The integration con- 

stants A,,,,, B,,,,, 4,” and 4, and the average 
enhancement in the evaporationbelocity due to drop 
motion. u,(,. can be evaluated from boundary con- 
ditions (17a)-( 17e) separated to the order of P,,(p). 

These are given by the expressions 

4,” = 0 Wa) 

A _ ch,,o{ e-“J’c Nu, 00 

“lCl - Nu, - co/r~ Sc r,’ (Nu, -v&-2) 

1 

r:(Nu,, -v,,/rz) II 
Wb) 

B”,,, = CQ2’0 
Nu, v; - 

Scr,” Nuo(Nuo-v,Jr~) 

+“lo ‘+z-Gk-Nu rf(N;;_v ,,.:) 
0 ‘ 0 C 11 

Bh,, = Govou,o(vo+ 1) 

(22c) 

(22d) 

NU, 00 

‘I0 =ScrCNuo(Nu,-v,,/rz) r,--l+r,/(Nu,r,-vi)’ 

(224 

The governing equations of the radial functions 
separated to the first order Legendre polynomial are 

r2R,“,,+(2r-vo)R&, -2Rg,, = SCG’~{(~, +I,u,,)r4 

+(k,+I,u,,)r’+(k,+l,u,,)lr 

+(k4+Z4u1,)Zy(r)}, 1 <r < r, (23) 

and 

r2R;,,+(2r-vo)RA,,- 2Rh,, = ScHb{(k, +I,u,,)r4 

+(k?+l~UII)r2+(ki+I~u,~)/r 

+(k4+14ulI)Mr)), 1 < r < r,. (24) 

The general solutions of the above equations are 
given by 

R YII 

Rh,t. 

where 

(25) 

fi ,(r) = (kl +l,u, ,I r3 e-‘*“(r2 - sv,r+ iv:) 

-2v~(2r-vo)~~~~3e~‘.‘d~}+{(k2+i2u,,)v~r 

-(2r+uO)em”Ig’ s ,'$WvoMOd~ 1 
fit(r) = 2r--v. 

.f3, (r) = e-“d’(2r+vo). 

The integration constants A,, ,, A,, , , B,, , and Bh,, and 
the velocity coefficient, u, , , can be evaluated following 
a similar procedure as discussed in the context of radial 
solutions associated with the zero order Legendre poly- 
nomial. Expressions for C,, and C,, as well as the afore- 
mentioned constants are given in Appendix B. 

The governing equations for the radial functions 
associated with Legendre polynomials of order n 2 2 
are given by : 

r2R;(,“+(2r-v,)R~,,,--(n+l)R,,,, 

= ScGou,,, 1 < r < r, (26) 

and 

r2R~,,,+(2r--vo)R~,,~-n(n+1)%,,, 

= SCHOU,“, 1 < r < r,. (27) 

An examination of the above equations reveals that 
the solutions R,,,, and R,,,,, will contain u,,, only as a 
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multiplicative constant. Substitution of such solutions 
into the five boundary conditions derived from equa- 
tions ( 17a) to (17e) leads to the cancellation of u ,,) from 
all the equations (when uln # 0). This results in a 
system of five linearly independent algebraic equations 

for determining the four integration constants A,,“, B,,,, 

AJj,n and 4,“. Such a system permits only a trivial 

solution for the aforementioned constants and a,,*. 

Therefore, the solutions of the S-Z variables and the 
stream functions corresponding to Legendre func- 

tions of order n 2 2 are identically equal to zero. 

It may be noted here that the evaporation velocity 
u,, can be evaluated as discussed earlier, even in the 
pure evaporation situation when the flame is absent. 
if Yx z 0 near r = 1 and Yt 2 0 towards the cell 
surface. However, the extraction of temperature and 
concentration fields from the S -Z solutions is possible 
only when there is an envelope flame within the cell. 

RESULTS AND DISCUSSION 

NUMERICAL EVALUATION OF THE 

SOLUTIONS AND DETERMINATION OF 

PHYSICAL QUANTITIES 

In order to validate the analytical results and the 

use of the cell model, attempts have been made to 
recover the known solutions of earlier studies in some 

limiting cases. These comparisons arc described 
below. 

The closed-form solutions derived in the previous 
section were verified against finite difference solutions 

of the corresponding separated equations. In order to 
match these two solutions, it was found to bc necessary 
to accurately evaluate the integral, IV(r) in equation 
(12b) and the integrals contained in the definition of 

,f’, ,(r) in equation (25). These were computed using 
a fourth order Gauss-Legendre quadrature, coupled 
with fourth order Lagrangian interpolation where 
necessary. 

(i) For Re = 0 and in the limit rc -P YZ, the present 

problem reduces to the case of a stationary, isolated 
droplet burning in a quiescent atmosphere. The cor- 
responding expressions for the burning rate and the 
Ramc stand-off ratio (rI-lir<,) match with equations 

(3.58) and (3.62) of ref. 12.51. 

For a given set of problem parameters, numerical 
computations for the velocity coefficients and the S 

Z variables were performed first. These results were 
further processed to extract physical quantities such 
as the flame shape and the profiles of temperature, 
fuel concentration and oxidizer concentration. The 
procedure adopted for the evaluation of various 
physical quantities is described briefly below. 

The evaporation velocity at a particular angular 

position on the drop surface can be obtained from the 

velocity coefficients using the expression 

(ii) Analytical studies are also available for various 

arrangements of stationary droplets [I417, 191. Some 
of their results for the evaporation velocity have been 
compared with our predictions in Fig. 2. The results 
of the earlier studies corresponding to a two-droplet 
array, four droplets placed in a square arrangement 
and eight droplets in a cubical arrangement have been 
included in the figure. For the sake of comparison. 
the cell radius has been assumed to be equal to half 
the droplet spacing while obtaining the results of the 
present cell model. Also, the Nusselt number values 
used in the figure were selected on the basis of the 

expressions provided in Appendix A. 
The predictions for different droplet arrangements 

24,!(/1) = u,,+~el~4,,,~&)+ UI ,P,(p,)l. v-8) 

The velocity coefficients u,,, u ,(, and u, , are, in turn, 
Zl- 

given by equations (1 Oc), (22e) and (B5). In particular, 
equation (1 Oc), which determines the spherically sym- 
metric evaporation velocity, Us). is transcendental in 
nature. In the present study, this equation has been 
solved using the bisection method. 

The location of the flame at each angular position, 
Y,.(P), is identified as the point where the variable G 
attains zero value. In order to retrieve the temperature 
and concentration profiles from the solutions of the 
SZ variables. it is necessary to invoke the thin-flame 
approximation. By virtue of this approximation, it 

can be shown that 

-- -- Previous results 

I - Ref [I41 

Yr. = G, Y, = 0 and T= H for 1 <Y < Y, 
(29a) 

and 

n- Ref [I71 

n- Ref [ISJ 

- Present results 

,,V 
5 7 9 ,I 13 I5 I7 IS 21 

Cell radius rc 

Yr,=O, Y,=-G and T=H-G for r>rf. FIG. 2. Comparison between cell model results and previous 

G’9b) analytical results for specific droplet arrangements 
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FIG. 3. Variation of flame stand-off ratio with cell radius and 
cell Nusselt number for spherically symmetric burning. 

in Fig. 2 indicate a decrease in evaporation velocity 

as the number of droplets increases. It may be noted 
that the present formulation corresponds to the 
arrangement in which a typical droplet is surrounded 

by a large number of droplets from all sides. There- 
fore, as expected, our results for evaporation velocity 
fall below those for a limited number of droplets. With 
respect to droplet spacing, the trends exhibited are 
similar for the previous as well as the present analyses. 

Both indicate that the evaporation velocity increases 
with rC due to the increased availability of oxygen. For 
large r,. the cell model results merge with those of the 
earlier studies, with all the curves approaching the 
limiting value for an isolated droplet. For low r,, 

the predictions of the present study are considerably 
lower than those of the selected droplet configur- 
ations. This discrepancy can be explained from the 
fact that in the earlier studies, all the droplets are on 
the boundary of the droplet cluster and, therefore. 
are subjected to only partial asphyxiation. In the cell 
model, however, a typical droplet is always an interior 
one, which is surrounded by neighbours all around. 

(iii) The variation of flame stand-off ratio with cell 
radius and Nu, is shown in Fig. 3, along with a com- 

parison of the present results with the prediction of 
Fendell et al. [9] for the burning of an isolated droplet 
when Re = 0. Except for r, and Nu,,, which are par- 
ticular to the present study, values of all the other 
parameters have been taken from ref. [9]. For 
Nu, N 0.02 and r, -+ m, the flame stand-off ratio pre- 

dicted by the present approach compares favourably 
with that of Fendell and co-workers. It is observed 
that the flame moves away from the droplet surface 
as the droplet spacing is reduced. There seems to be 
a tendency for the flame to position itself suitably so 
that it receives the appropriate supply of oxygen. At 
each value of NM,, for r, less than a critical value, no 
envelope flame exists. It is surmised that for such 
dense sprays, the combustion may no longer be 

governed by the discrete droplet burning mode and 
may correspond to a group burning regime. 

(iv) In order to evaluate the performance of the cell 

model in the presence of drop motion, our results for 
large rC have been compared with those of Fendell et 
al. [9] in Tables 1 and 2. The values of NuO = 0.05 and 
r, = 25 have been used to obtain the cell model results 
shown in these tables. Table 1 provides a comparison 

between the velocity coefficients, while the flame 
location at two different Reynolds numbers is com- 
pared in Table 2 for various angles. The agreement 
between the results is satisfactory. 

The novel contribution of the present study lies in 

the development of results for multi-drop situations 
in the presence of convection. The comparisons pro- 
vided here illustrate that when the droplet spacing or 
the Reynolds number is varied, the cell model results 
indeed approach appropriate limits. For spray com- 
bustion in the discrete droplet burning mode, there- 
fore, the cell mode1 offers a powerful mathematical 

tool. Some important results for multi-droplet com- 
bustion including convective effects are presented in 
the following sections. 

Evaporation wlocity co#icients 

In Figs. 4 and 5, the velocity coefficients, uO, u,” 

andu,,, are plotted against the cell radius for different 

Nu,, and cloud conditions. It is important to note that 
u0 gives the evaporation velocity in the absence of 

drop motion, while u, o and U, , represent the average 
enhancement and the amplitude of angular variation 
respectively due to drop motion. In the context of 
separating the convective effects to different orders 
of Reynolds number, the variation in Nu,, can be 
interpreted in terms of the variation in the heat/mass 

capacity of the convective cloud at the cell boundary. 
In both the figures, the results for the lower range 

of cell radius correspond to the pure evaporation situ- 
ation. As the cell radius is increased, u0 increases due 
to the higher rate of oxygen transfer at the cell surface. 
It may be noted from equation (SC) that the mass 
transfer is influenced by two factors, namely, the Nus- 
selt number Nu,, and the strength of the radially out- 

Table 1. 

Ref. [9] 
Present study 

UU WI0 UII 

1.942 0.97 I 0.715 
1.956 0.839 0.527 

Table 2. 

Re = 0.0 Re = 0.1 

All angles a = o* 0=90‘ B= 180” 

Ref. [9] rf 4.60 3.89 4.05 4.49 
Present rf 
study 4.49 3.64 3.94 4.36 

_..___ 
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FIG. 4. Effects of cell radius and cell Nusselt number on 
evaporation velocity coefficients. 
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FIG. 5. Effects of cloud conditions on the evaporation 
velocity coefficients. 

ward flow field. Indeed, the radially outward flow 
tends to oppose the oxygen transfer to the cell. For 
larger cell radius, the effect of radial flow on transport 
decreases in comparison to that of the convective 
cloud Nusselt number: further, the cell surface arca 
is also larger. Both factors contribute to the increase 

in 1(,, with r,. For a fixed cell radius, u,) increases with 
Nu,, as the effectiveness of the cloud in transferring 
mass is enhanced. The arguments cited above with 
regard to the rate of oxygen transfer at the cell surface 

are applicable when combustion takes place within 
the cell. For the pure evaporation situation, similar 
arguments may be put forth for the transfer of fuel to 
the cloud through the mixture of fuel, oxygen and 
inert species. 

The average enhancement in the evaporation 

velocity, U, (jr has a complex dependence on the cell 

radius and NM”, as can be seen from equation (2). 
For low r,. which generally corresponds to the evap- 
oration situation, the enhancement increases due to 
increase in the zero order flow field. It is to be borne 

in mind that in this case the rate of fuel transfer is 
aided by the radially outward flow. However. in the 
combustion regime corresponding to large rC, the 
opposing effect of the zero order field to oxygen trans- 

port leads to a reduction in the average enhancement. 
The amplitude of angular variation in the evaporation 
velocity. u, , , is not significantly affected by either the 
cell radius or the Nusselt number. 

With regard to the effects of cloud conditions upon 

the velocity coefficients. it is observed that the oxygen 
concentration of the cloud influences the rate of evap- 

oration much more strongly than the cloud tem- 
perature (Fig. 5). This is to be expected, since fuel 
drops are likely to suffer more from paucity of oxygen 
than from heat in a multi-drop combustion situation. 
The mass transfer process thus appears to be the con- 
trolling mechanism. 

Flame shupesfor quusi-steady burning 

The flame shapes at various Reynolds numbers and 

droplet spacings are presented in Fig. 6. In order to 
provide a comparison between the relative sizes of the 
drop and the flame, the droplet has been shown as a 
hatched surface. Also, at each Reynolds number. the 
range of droplet spacing for which no envelope flame 
exists has been indicated. 

The flame shifts outwards when the droplet spacing 

is reduced. It may be inferred here that in the oxygcn- 
starved environment within the cell, the flame locates 
itself as close to the cell surface as is necessary, where 
the oxygen requirement of the flame is met. In the 
oxygen-rich environment corresponding to a large cell 
radius, it is plausible that the flame location is con- 
trolled by the demand for fuel. The flame shape results 
of the present study smoothly approach the prediction 
of Fendell et a/. [9] for isolated droplet burning. At 
higher Reynolds number, the flame is drawn closer to 
the drop in the front, and pushed further away from 
the drop in the rear portion, with respect to the direc- 
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FIG. 6. Flame shapes for different Reynolds numbers and droplet spacings. 

tion of the drop motion. Also, the overall flame 
location advances nearer to the drop, which appears 
to he a consequence of increased oxygen supply, in the 
light of the arguments presented above. An important 
effect of the increase in Reynolds number is to lower 
the threshold cell radius above which an envelope 
flame exists. It is interesting to note that the flame 
shapes predicted by the regular perturbation analysis 
are smooth and exhibit no apparent anomaly, even 
at the fairly high value of Reynolds number of 0.3. 
However, at the same Re, the flame shape, determined 
on the basis of the singular perturbation study 
of Fendell et al. [9], indicated a breakdown of the 
analysis. 

Temperature and concentration profires 
The profiles of gas phase temperature and mass 

fractions of oxygen and fuel are shown in Figs. 7(a), 
(b), 8 and 9. In Fig. 7, the effects of the cell size 
and the angular position are shown, while those of 
convective cloud conditions are depicted in Figs. 8 
and 9. These profiles have been drawn against the 
normalized radial position defined by 

5 = (r-rd)/(r,-rd). 

In all the figures, the flame location is marked by a 
sharp discontinuity in the temperature as well as in 
the concentration profiles. This is a consequence of 
the thin-flame approximation invoked in the present 
analysis. In addition, due to the same approximation, 
the region between the drop and the tIame is devoid 
of oxygen and the region beyond the flame is devoid 
of fuel. It is observed that the temperature and the 
fuel fraction at the drop surface exhibit only mild 
variations over the range of parameters considered 

here ; the temperature and the oxygen concentration 
at the cell surface, on the other hand, show significant 
variation for different conditions. The near-constancy 
of drop surface conditions reaffirms the usual obser- 
vation that the wet bulb temperature is close to the 
boiling point of the fuel. 

The oxygen concentration in the cloud, in general, 
appears to have a much stronger influence upon the 
profiles than the cloud temperature (see Figs. 8 and 
9). This observation supports our claim that the trans- 
fer of oxygen plays a crucial role in spray combustion. 
The curves corresponding to px,, = 1.0 and 

r?,., = 0.7 represent the burning of the droplet in an 
oxygen-rich atmosphere. In such a situation, the most 
notable change observed is in the flame temperature, 
when the oxygen concentration of the cloud is varied. 
For oxygen-starved situations, however, the profiles 
of temperature and concentration and the flame 
location undergo drastic changes with oxygen con- 
centration of the cloud. An interesting trend of slight 
shift in the flame location closer to the drop is 
observed when Fx,, changes From 1.0 to 0.7. It is 
conjectured that this shift may be due to the change in 
the flame temperature, which affects the evaporation 
process at the drop surface. 

CONCLUSION 

A mathematical solution to the spray combustion 
problem including convective effects due to drop 
motion, has been developed. The validity of the results 
have been critically examined and established by com- 
paring with other works in the Iiterature for various 
limiting cases. The effects of droplet spacing, drop 
motion and the condition of the spray environment 
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FIG. 7. Variation of temperature and concentration profiles along the axis. 
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FIG. 9. Temperature and concentration profiles for different 
cloud temperatures. 

upon the combustion characteristics have been high- 
lighted. 
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APPENDIX A 

For obtaining the order of magnitude for the zero order 
Nusselt number, Nu,, we shall consider the auxiliary problem 
of heat transfer in a purely radial flow fieid. The dimen- 
sionless governing equation for temperature is 

(‘?)‘--L’,,T’= 0 (AI) 

where T = 7’(r) only. 
The general solution of the above equation is 

T= Aexp(-v,/r)+B: 

subjected to the boundary conditions 

T=T, at r=r, 

and 

T-T,, as r-+m 

the final solution of temperature becomes 

The Nusselt number at the surface r = r, can then be deter- 
mined from the heat balance relation : 

[-dT/dr~(T-T,)z~,/r’]l,=,~ = Nu(T,-T,) (A3) 

where Nu = hr,/i. 
Combining equations (A2) and (A3), it is finally obtained 

that 

For pure conduction, in the limit of cO+O, the above 
equation reduces to 

Nul,.,,< = I/r,. (A5) 

If the radial field is such that tjO << r,, then one obtains the 
Nusselt number to the leading order of (Do/r,) as 

NuI,.z,L = (1 +v0/2r,)/r,. (A6) 

Now, putting rc = 20, the conduction limit Nusselt number 
is calculated from equation (A5) as 

Nu = 0.05. 

In the range of validity of equation (A@, the value of 
Nu is slightly larger. For the muiti-drop burning problem, 
equations (A4)-(A6) can be employed as guidelines for sel- 
ecting the range of Nu,, by taking r = r, to represent the cell 
surface. 

APPENDIX 6 

The expressions for the integration constants 
c,,+ C,,> A,,,, B,,, and .I$,, ofequation (25) and the velocity 
coefficient, u, , , are given below : 

A Y,, =&9_ ( >* ~l~~l,+~lz)--.4r*(ff*,u,,+a,,)f @If 

A,,,, =d_th2:(b,l.,,+bi,)-h,Ijhilt(llibil)! (82) 

B,,, =~jY,,(aZlu,,+a22)-g1,(0,,U,,+a,,): (B3) I 

Bh,, =~jh,,(b,,u,,+bz,)-h~,(b,,N,,th,,)j (B4) 
* 
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n, = (r,‘(r,‘-4r,,r,,:3+r,?,) 

+Nu,,r:(rf-5t~,,r,:h+c~~3)je~~‘~~’~ 

-2~: ((Nu,,-rl,,‘r,‘)(2r, -I.,,) 

x (25 -r,,&(t) d<. 

MODELE ANALYTIQUE DE LA COMBUSTION DE GOUTTELETTES PULVERISEES 
DE COMBUSTIBLE, LENTEMENT MOBILES 

RBsumi-La combustion d’un akrosol de combustible dili a & analyste dans le cadre d’un modele 
de cellules sphtriques. La combustion quasi permanente dune gouttelette typique a 6te etudiee dam 
I’approximation de la flamme mince. A la surface de la cellule, on impose les conditions aux limites de 
tension de cisaillement nulle et de transfert convectif de chaleur et de masse nul. Des solutions analytiques 
pour le mouvement rampant de la goutte ont et& obtenues par une procedure de perturbation reguliere 
avec le nombre de Reynolds de la goutte comme parametre de perturbation. Une etude parametrique est 
faite qui implique le nombre de Reynolds, la taille de la cellule et les conditions d’tcoulement libre au dela 

de la surface de la cellule. 

EIN ANALYTISCHES MODELL FUR DIE SPRUHNEBELVERBRENNUNG BE1 
BRENNSTOFFTROPFEN GERINGER GESCHWINDIGKEIT 

Zusammenfassung-Es wird die Verbrennung eines verdiinnten Brennstoff-Sprtihnebels mit Hilfe eines 
Kugeizellenmodells untersucht. Das stationare Brennen eines typischen Triipfchens wird mit Hilfe einer 
speziellen Naherung beschrieben. An der Zelloberflache werden folgende Randbedingungen aufgepdgt : 
verschwindende Schubspannung und verschwindender konvektiver WPrme- und Stofftransport. Fur die 
schleichende Bewegung der Tropfen ergeben sich unter Anwendung eines Storungsverfahrens mit der 
Tropfen-Reynolds-Zahl als Storungsparameter analytische Ldsungen. AbschlieDend werden Para- 
meteruntersuchungen fur die Tropfen-Reynolds-Zahl, die ZellgriiBe und die Freistrombedingungen au5er- 

halb der Zelloberllache durchgefiihrt. 

AHAJ’IHTH9ECKAfl MOAEJIb I-OPEHHR PACIIbIJIA TOI-IJIUBA I-IPH MEAJIEHHOM 
ABMXEHHH KAITEJIb 

hoTaum+-ropeaue pa3rmicermoro pacnbtna ronnaaa auanw3npyercr a paMXaX c@epeyecroii aqeuc- 
~oii Monena. Ksasecramioriapnoe ropeuwe THII~~~HO~~ Xannri accnenonanocb c nohtombio annpoXcuh4a- 
u)IW TOHKOrO nnaMeun. Ha nOBepXHOCTu aYei&i riCnOnb3yroTCa rpaHH’iHble )'CJlOBWl Hj'JteBOrO 

HaItpKXRHliK CJUlkil-Q B KOHBeKTHBHOI-0 TeIIJIO- H MkKCOHe~HOCa. MeTOnOM pWyn%IpHblX B03MyIIleHHZi C 

vHcnoM PeiiHonbnca Qnn Karma * KaWxrBe napaMeTpa Bos~yrue~ria nony+eebr amurrrrmmcrore 
pemerisn arm nonsymero neunce~~x rcannu. BbmonHeHo Tarcme napahfeTpH9ecxcoe HccnenonaHHe c Hcno- 

nb30BaHBeM qHcna PeiiHonbnca, pashlepa nveiiXH 11 ycnomiii c~o6o~oro -regeHm 38 npenenahnr ee 
nOBepXHOCTH. 


